Deep Learning

Neural Cages for Detail-Preserving 3D Deformations

We propose a novel learnable representation for detail-preserving shape deformation extending a traditional cage-based deformation technique. We demonstrate the utility of our method for synthesizing shape variations and deformation transfer.

Blind Image Super-Resolution with Spatially Variant Degradations

We propose a novel approach for single image super-resolution to simultaneously predict high resolution images and the degradation kernels.

Differentiable Surface Splatting for Point-based Geometry Processing

We propose a high-fidelity differentiable renderer for point clouds. We demonstrate how the proposed technique can be used to leverage contemporary deep neural networks to achieve state-of-the-art results in challenging geometry processing tasks.

Neural Shapes

Representing and generating shapes using neural networks

Patch-base progressive 3D Point Set Upsampling

We present a detail-driven deep neural network for point set upsampling. A high-resolution point set is essential for point-based rendering and surface reconstruction. Inspired by the recent success of neural image super-resolution techniques, we …

Point-based geometry processing

Making use of this extremely flexible yet unstructured form of shape represenation.

A Fully Progressive Approach to Single-Image Super-Resolution

We set a new benchmark for single-image super-resolution by exploiting progressiveness both in architecture and training. The proposed multi-scale models, **ProSR** and **ProSRGan**, improve the reconstruction quality in terms of PSNR and visual quality respectively. ProSR is one of the winning teams.

Single-Image Super-Resolution

Pushing the limit of "zoom-in"s.